3.101 \(\int \frac{A+B \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx\)

Optimal. Leaf size=102 \[ \frac{(B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}-\frac{(-B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}} \]

[Out]

((I*A + B)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) - ((I*A - B)*ArcTanh[Sqrt[a + b*
Cot[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.160242, antiderivative size = 102, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 4, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.16, Rules used = {3539, 3537, 63, 208} \[ \frac{(B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{d \sqrt{a-i b}}-\frac{(-B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{d \sqrt{a+i b}} \]

Antiderivative was successfully verified.

[In]

Int[(A + B*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]],x]

[Out]

((I*A + B)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]])/(Sqrt[a - I*b]*d) - ((I*A - B)*ArcTanh[Sqrt[a + b*
Cot[c + d*x]]/Sqrt[a + I*b]])/(Sqrt[a + I*b]*d)

Rule 3539

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c
 + I*d)/2, Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Dist[(c - I*d)/2, Int[(a + b*Tan[e + f*x]
)^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
&& NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]

Rule 3537

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(c*
d)/f, Subst[Int[(a + (b*x)/d)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{A+B \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx &=\frac{1}{2} (A-i B) \int \frac{1+i \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx+\frac{1}{2} (A+i B) \int \frac{1-i \cot (c+d x)}{\sqrt{a+b \cot (c+d x)}} \, dx\\ &=\frac{(i A-B) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a+i b x}} \, dx,x,-i \cot (c+d x)\right )}{2 d}-\frac{(i A+B) \operatorname{Subst}\left (\int \frac{1}{(-1+x) \sqrt{a-i b x}} \, dx,x,i \cot (c+d x)\right )}{2 d}\\ &=\frac{(A-i B) \operatorname{Subst}\left (\int \frac{1}{-1-\frac{i a}{b}+\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \cot (c+d x)}\right )}{b d}+\frac{(A+i B) \operatorname{Subst}\left (\int \frac{1}{-1+\frac{i a}{b}-\frac{i x^2}{b}} \, dx,x,\sqrt{a+b \cot (c+d x)}\right )}{b d}\\ &=\frac{(i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )}{\sqrt{a-i b} d}-\frac{(i A-B) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )}{\sqrt{a+i b} d}\\ \end{align*}

Mathematica [A]  time = 0.576769, size = 154, normalized size = 1.51 \[ \frac{\sin (c+d x) (A+B \cot (c+d x)) \left (\sqrt{a+i b} (B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a-i b}}\right )+\sqrt{a-i b} (B-i A) \tanh ^{-1}\left (\frac{\sqrt{a+b \cot (c+d x)}}{\sqrt{a+i b}}\right )\right )}{d \sqrt{a-i b} \sqrt{a+i b} (A \sin (c+d x)+B \cos (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cot[c + d*x])/Sqrt[a + b*Cot[c + d*x]],x]

[Out]

((Sqrt[a + I*b]*(I*A + B)*ArcTanh[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a - I*b]] + Sqrt[a - I*b]*((-I)*A + B)*ArcTanh
[Sqrt[a + b*Cot[c + d*x]]/Sqrt[a + I*b]])*(A + B*Cot[c + d*x])*Sin[c + d*x])/(Sqrt[a - I*b]*Sqrt[a + I*b]*d*(B
*Cos[c + d*x] + A*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.063, size = 3976, normalized size = 39. \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x)

[Out]

1/4/d/b/(a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/d/b^2/(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/
2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^4+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2
)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*
a^4-1/d/b^2*(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x
+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a+1/d/b^2/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^3+3/d*b/(a^2+b^2)^(3
/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)
^(1/2)-2*a)^(1/2))*A*a^2-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+
(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^4+1/d/b^2*(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)
-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a
-1/d/b^2/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a
)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^3-3/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a
+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^2+1/d*b^2/(a^2+b^2)^(3/
2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^
(1/2)-2*a)^(1/2))*B*a-1/4/d/b/(a^2+b^2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)
+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/4/d/b^2/(a^2+b^2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(
1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/d/b^2/(a^2+b^2)/(2*(
a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2
*a)^(1/2))*B*a^4-1/d*b^2/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2
*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a-1/4/d/b/(a^2+b^2)^(3/2)*ln((a+b*cot(d*x+c))^(1/2)*
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/4/d*b/(a^2
+b^2)^(3/2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*A*(2*(a^2+
b^2)^(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1
/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^2+1/4/d/b/(a^2+b^2)^(3/2)*ln(b*cot(d*x+c)+a+(
a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3+1/4/d
*b/(a^2+b^2)^(3/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^
(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A*a^2-1/4/d/b^2/(a^2+b^2)*ln((a+b*cot(d*x+
c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/
d/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2)
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^3+1/4/d/b^2*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot
(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/d/(a^2+b^2)^(3/2)*ln((a+b*cot(d*x+c))^(1/2)*(
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2+1/d/(a^2+b^2)
^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b
^2)^(1/2)-2*a)^(1/2))*B*a-2/d/(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2
+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2-1/4/d/b^2*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/4/d/(a^2+b^2)^(3/2)*ln(b*
cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(
1/2)*a^2-1/d/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)
+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a+1/d/b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c
))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2+1/d/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^
(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)
)*B*a^3+1/4/d/(a^2+b^2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2)
)*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/4/d/(a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*
cot(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+2/d/(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*ar
ctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2+1/d*b^2/(a^
2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b
^2)^(1/2)-2*a)^(1/2))*B+1/4/d*b/(a^2+b^2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*cot(d*x+c)
-a-(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*b^2/(a^2+b^2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*
(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B-1/4/d*b/(a^2+b^2)*ln(b*
cot(d*x+c)+a+(a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*A*(2*(a^2+b^2)^(1/2)+2*a)^(
1/2)+2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*
x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A-1/4/d*b^2/(a^2+b^2)^(3/2)*ln((a+b*cot(d*x+c))^(1/2)*(2*(a^2+b^2)
^(1/2)+2*a)^(1/2)-b*cot(d*x+c)-a-(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-1/d*b/(a^2+b^2)^(1/2)/(2*(a^
2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a
)^(1/2))*A-2/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)
^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*A+1/4/d*b^2/(a^2+b^2)^(3/2)*ln(b*cot(d*x+c)+a+(a+b*cot(d*x+c
))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*B*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/d*b/(a^2+b^2)^(1/2)/
(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*cot(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/
2)-2*a)^(1/2))*A-1/d/b^2/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*cot(d*x+c)
)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*B*a^2

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cot \left (d x + c\right ) + A}{\sqrt{b \cot \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((B*cot(d*x + c) + A)/sqrt(b*cot(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{A + B \cot{\left (c + d x \right )}}{\sqrt{a + b \cot{\left (c + d x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cot(d*x+c))/(a+b*cot(d*x+c))**(1/2),x)

[Out]

Integral((A + B*cot(c + d*x))/sqrt(a + b*cot(c + d*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{B \cot \left (d x + c\right ) + A}{\sqrt{b \cot \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cot(d*x+c))/(a+b*cot(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((B*cot(d*x + c) + A)/sqrt(b*cot(d*x + c) + a), x)